Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
 
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Multiscale Computation of Fluid and Ion Transport in Nanochannels: The Effect of Partial Charges

S. Joseph, A.N. Chatterjee and N.R. Aluru
Beckman Institute of Advanced science and technology, US

Keywords:
silica channels, nanofluidics, multiscale, quantum partial charges

Abstract:
We demonstrate a hierarchical multiscale methodology to solve ion transport in nanoscale channels and show that the partial charges from quantum calculations significantly alter transport properties and I-V plots for electrolytes in confined geometries. Effects of nanoscale confinement on the transport properties of ions and water need to be resolved for the characterization and design of nanochannel based devices. Though atomic scale simulations can be used to explicitly treat the finite size of ions and water, it is possible that in nanoscale channels the contribution of the quantum effects on the electrostatic interactions of the wall, such as the bond polarization effects can influence fluid transport properties. We employed a hierarchical multiscale approach that takes into account the quantum effects, by first calculating the atomic partial charges using the DFT, and then using these as inputs for the MD simulations to calculate the diffusion coefficient and mobility, and finally using these values in the continuum Poisson-Nernst-Planck equations to calculate the current-voltage characteristics. Contributions of the wall–electrolyte interactions are substantial in channel widths of the order of 1-2 nm. Electroosmotic flow is observed in uncharged channels because of the oscillations in ion density, which creates a local net charge density.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact