Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

A Micromanipulation Method based on the Capillary Force by Phase Transition

O. Katsuda, S. Saito and K. Takahashi
Tokyo Institute of Technology, JP

Keywords:
micromanipulation, liquid bridge, phase transition, condensation

Abstract:
The size of an object has decreased in the electrical and mechanical engineering field for fabricating highly functional microelectro-mechanical systems and photonic crystals. In micromanipulation, even if we can pickup micro-objects, it is very difficult to detach the micro-objects because adhesional force is dominant. Tanikawa et al. have detached micro-objects by using a micro-drop. This indicates that capillary force is effective in micromanipulation. Obata et al. have shown that capillary force can be controlled by regulation of liquid bridge volume. J. Liu et al., have fabricated a manipulation system named freeze tweezer based on freezing force to manipulate a wide variety of objects. Freeze tweezer has been controlled temperature by means of the Joule-Thompson throttling effect. However, they have not solved the detaching problem of adhesion phenomenon completely. In this study, our group manipulates micro-objects with capillary force by condensing water from the atmosphere. This condensed water forms a water bridge. The water bridge can be controlled by evaporation and condensation. A Peltier device is used for temperature control in order to achieve water phase transition. By using this method, we have achieved repeatable micromanipulation with simple equipments. We insist this wide applicable method can be effective in micromanipulation automation.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact