Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
 
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Supercritical Hydrothermal Synthesis of Organic Inorganic Biomolecule Hybrid Nano Particles

T. Adschiri, S. Takami, M. Umetsu and S. Ohara
Tohoku University, JP

Keywords:
nanoparticle, supercritical, hydrothermal synthesis, hybrid

Abstract:
This paper describes specific features of supercritical hydrothermal synthesis method: 1) rapid nanoparticles production, 2) morphology control with a little change of temperature or pressure, 3) control of oxidation state by introducing oxygen or hydrogen gas, and 4) highly crystallized single crystal formation. By introducing organic substances including biomolecules in a reaction atmosphere of supercritical hydrothermal synthesis, nanoparticles whose surface was modified with organic materials were synthesized. In supercritical state, water and organic materials form a homogeneous phase, which provides an excellent reaction atmosphere for the organic modification of nanoparticles. Modification with bio-materials including amino acids was also possible. By changing organic modifiers, particle morphology and crystal structure were changed. This organic surface modification provides a various unique characteristics for the nanoparticles: Dispersion of nanoparticles in aqueous solutions, organic solvents or in liquid polymers can be controlled by selecting hydrophilic or hydrophobic modifiers. Polymer-like materials can be formed for the amino acid modified nanoparticles probably by the self-assembly of amino acid.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact