Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Diode Laser Welding of Planar Microfluidic Devices, BioMEMS, Diagnostic Chips & Microarrays

J-W Chen, J. Zybko and J.T. Clements
NanoSciences, Inc., US

Keywords:
microfluidics, lab-chips, microarrays, polymer MEMS, laser welding

Abstract:
As polymer-based microfluidic devices, lab-chips and diagnostic platforms are pushed towards increasingly smaller geometries, advances in diode laser technology now allow for cleaner and more precise assembly. Coupling the use of photolithographic methods and mask-sets have enabled new assembly and bonding techniques for a wide range of biomedical devices and implantables. Additionally, the growing use of these devices in smaller formats has led to designs requiring a film seal. New technologies integrating diode lasers now makes it possible to join plastic microfluidic structures, and sub-components, by using laser light to join the elements at the interface, producing bond areas with line resolutions as tight as 1 micron. The assembly process is accomplished without adhesives, diffused heat, vibration, or the formation of particulate contamination, and has proven a superior alternative when facing concerns regarding biocompatibility. This technique has demonstrated flexibility not only in the manner in which the laser light can be delivered, but also in the materials which can be joined: from impregnated thin-films to thicker substrate platforms. In addition, laser diode welding can now be achieved with either a moving spot seal or a photolithographic masking process: The mask technique allows for freely definable geometries to be generated on a metal-coated glass using the photolithographic process. Where the metal is etched away, the laser light is allowed to pass, transferring the pattern onto the substrate. Dedicated masks allow for flexibility and an automatic alignment can precisely position the mask within +/- 1.0 microns.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact