Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
 
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

A Wavelet Method for the Density-Gradient Equation

H. Morris and A. Limon
San Jose State University, US

Keywords:
quantum tunneling, density-gradient equation, unstructured grids, wavelets, boundary layer.

Abstract:
As MOSFET device lengths have shrunk to submicron level, so too has the oxide thickness steadily reduced. At around 4-5nm thicknesses quantum effects start to become noticeable as electrons are able to tunnel through the oxide layer. The Density-Gradient equation is a means of calculating approximate quantum corrections to existing formulae without solving the full Poisson-Schodinger system. The problem of solvingdensity gradient equationsthe gate region of a MOSFET is considered. These equations comprise a singularly perturbed system of ordinary differential equations with boundary layer type solutions. In order to treat the solution in the boundary layer correctly, special numerical techniques are needed. Several methods have been proposed in literature and include nonlinear discretization schemes which appear to be sensitive to boundary conditions. We therefore propose a new way to solve the equations using a wavelet method similar to methods used in chemical physics. This wavelet method allows us to combine the best features of each of the exiting approaches.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact