Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Strong DC and Low-Frequency AC Fields for the Manipulation of Particles and Fluids in Microfluidics

A. Kumar, Z. Qiu, B. Khusid, M. Yeksel and A. Acrivos
New Jersey Institute of Technology, US

Keywords:
fluid transport, electroosmosis, electrophoresis, particle transport, cell transport

Abstract:
Electroosmosis and electrophoresis are considered to be the main phenomena for transport of aqueous liquids and particles in microfluidic devices because field-based techniques do not require any moving parts and can be incorporated more favorably into micro-analytical systems. In contrast to traditional applications involving relatively low fields and highly viscous media, the use of micron-sized channels enables one to employ strong fields (up to ~ kV/cm) and use low-viscous fluids since undesirable field effects are suppressed in such tiny channels. Under certain conditions, the interparticle electrical and hydrodynamic interactions drastically affect the suspension behavior in a microchannel due to its small dimensions. The use of these many-body effects would broaden substantially the range of applications of fields for the manipulation and control of particles and fluids in microdevices. Quantification of the motion of fluids and suspended particles in microchannels is critical for the design and optimization of electrokinetic microfluidic devices. We report (i) a method for measuring the fluid electroosmotic mobility of microchannel surfaces and the electrophoretic mobility of particles in strong DC and low-frequency AC fields and (ii) observations of the reversible aggregation of particles in a microchannel that can be tuned by varying the field strength and frequency.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact