Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
 
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Electrical Detection of DNA Hybridization using Adjacent Impedance Probing (AIP) Method

H. Zhou, K-S Ma, J. Zoval and M. Madou
University of California, Irvine, US

Keywords:
electrical detection, DNA hybridization, adjacent impedance probing, AIP

Abstract:
Sensitivity and selectivity are two of the most challenging criteria for the development of DNA biosensor devices. These biosensor devices have attracted interest for the rapid identification of pathogens in humans, animals, and plants, for the detection of specific genes in animal and plant breeding and in the diagnosis of human genetic disorders. Traditionally, molecular diagnostic detection has relied on fluorescent or radioactive labels, and signal transduction is performed with equipment that greatly increases size and cost of the whole system. Electronic detection is expected to involve less complicated and smaller instrumentation while detection limits are maintained. Previous efforts on impedance-based DNA biosensors show limitations on repeatability, sensitivity and selectivity. In this work, we introduce the Adjacent Impedance Probing (AIP) technique for DNA hybridization detection. In this novel method, the DNA hybridization site is employed for the bio-recognition event (this site does not necessarily need an underlying conductor surface) and a bare adjacent conductor electrode is employed for generating the largest possible impedance change through the deposition of an insulating material or through chemical passivation induced by the enzymatic reporter reaction.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact