Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
 
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Modeling of Laser Assisted Direct Imprinting Process Based on Pulsed Laser Heating and Elastodynamic Theory

Y-C Lee, C-H Chuang, D-B Wang, C-P Liu and F-B Hsiao
National Cheng Kung University, TW

Keywords:
laser assisted direct imprinting (LADI), nano-imprinting, imprinting mechanism, pulsed laser heating, elastodynamics

Abstract:
Laser Assisted Direct Imprinting (LADI) is an efficient and direct way for fabricating nanostructures. In short, a quartz mold with nano-features is first pressed against a sample. Upon radiating a short laser pulse on the sample surface through the quartz mold, near-surface material is molten momentarily. The pre-loaded contact pressure will then transfer the nanostructures onto the sample. The LADI has some advantages such as simplicity and efficiency since no further chemical etching process is needed. Apparently, the underlying mechanism of LADI is fairy complicated and is still not understood. In this study, the mechanism of LADI is investigated theoretically and experimentally. First of all, a numerical simulation of the pulsed laser heating is developed based on the laser-material interaction and a 1D thermal analysis. For given laser characteristics and material properties, the complete history of temperature and melting depth during the laser heating is obtained. Secondly, the imprinting process is modeled precisely based as elastodynamics and wave motion. From the analysis, the imprinting velocity of quartz surface as a function of time is obtained. By conjunction of the pulsed laser heating simulation and the surface movement equation, the relationship between the pre-loaded pressure and the imprinting depth can be quantitative determined. It is found that at lower contact pressure, the imprinting depth is almost linear proportional to the contact pressure, while at higher contact pressure is most determined by the laser fluence. Some preliminary experimental data are obtained which indicate similar trend as predicated by the proposed theory. This new theoretical model not only provides a good insight to the fundamental mechanism of LADI but also a useful tool for quantitative control or optimization of LADI processes.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact