Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
 
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Design Optimization of a Surface Micromachined Electro-Thermal Beam Flexure Polysilicon Actuator

A. Atre
Georgia Institute of Technology, US

Keywords:
optimization, ANSYS

Abstract:
Electro-thermal polysilicon actuators are widely employed in optical MEMS applications. These actuators are typically designed for maximum deflection (unloaded) or force (loaded) output characteristics. The optimal design methodology of the actuator has been investigated previously using trial and error analytical and semi-analytical methods. In this paper, design optimization of the electro-thermal actuator is attempted by a multi-variable non-linear comprehensive finite element analysis. The optimization subroutine is implemented to investigate and compare the performance of the actuator by adjusting the design variables to obtain an actuator geometry that provides optimum deflection or force output for minimal power consumption. The results reveal a significant reduction in power consumption with an increase in the maximum steady-state deflection for unloaded actuators. For loaded actuators, it is observed that the available force output is increased slightly, the steady-state deflection decreased slightly and the power consumption increased slightly. The developed analysis provides a systematic method to design the thermal actuator to meet several performance requirements.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact