Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2005 NSTI Nanotechnology Conference & Trade Show
Nanotech 2005
Bio Nano 2005
Business & Investment
Nano Impact Workshop
Program
Sessions
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Index of Keywords
Keynote Presentations
Confirmed Speakers
Participating Companies
Industry Focus Sessions
Nanotech Expo
Special Symposia
Conferences
Sponsors
Exhibitors
Venue 2005
Organization
Press Room
Subscribe
Site Map
 
Nanotech 2005 At A Glance
Nanotech Proceedings
Nanotechnology Proceedings
Global Partner
nano tech
Supporting Organizations
Nanotech 2005 Supporting Organization
Media Sponsors
Nanotech 2005 Medias Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Nanofilament Directional Control within a Hybrid Microelectronic Actin-Myosin Motility Assay via Integrated Electric Field Addressing

P. Famouri, H. Takatsuki, L.A. Hornak, K. Brown, R. Chilakamarri, A. Timperman, J. Lenke, P. Gannett and K. Kohama
West Virginia University, US

Keywords:
myosin electric field

Abstract:
Control of biomolecular transport is essential to the advancement of nanokinematic systems whether for molecular cargo delivery in sensing or assembly processes, or as a means to interface micro-electro-mechanical systems with the nanoscale regime. Actin-myosin and nanotubule-kinesin systems represent two protein-based systems being explored as basic building blocks for realization of linear and rotary biomolecular motors based on biological nanoscale transport phenomena. While macroscopic electro-motility assays have been documented in the literature, harnessing this biological nanokinematic system to achieve spatially addressable transport of cargo on the micrometer scales of an integrated chip surface is of significant interest. In this work, we undertake a fundamental exploration of the interaction of microscale localized electric fields with the nanoscale actin-myosin motility assay. Electric fields established with arrays of integrated electrode structures under the assayed surface are used to experimentally characterize the effect of these local fields on nanoscale linear biomolecular motor filament alignment, direction of motion, and assay ambient. Fluorescence techniques are used to optically observe actin motion in assay and determine field effects on the actin-myosin system. This paper will describe our current results in this research. These results will contribute to the understanding of the governing electro-mechanics of the actin-myosin molecular transport system that can serve as a framework for the control of nanoscale biomolecular motors from within a microelectronic environment. This research is funded in part by NSF NER Grant ECS-0403742, and a WVU PSCoR Grant 10006765.

Back to Program

Sessions Sunday Monday Tuesday Wednesday Thursday Authors

Nanotech 2005 Conference Program Abstract

 
Gold Sponsors
Nanotech Gold Sponsors
Silver Sponsors
Nanotech Silver Sponsors
Gold Key Sponsors
Nanotech Gold Key Sponsors
Nanotech Ventures Sponsors
Nanotech Ventures Sponsors
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact