Unified One-Iteration Parameter Extraction for Length/Width-Dependent Threshold Voltage and Unified Drain Current Model

Siau Ben Chiah, Xing Zhou, Karthik Chandrasekaran, Guan Huei See, Wangzuo Shangguan, Shesh Mani Pandey, Chew Hoe Ang, Michael Cheng, Sanford Chu, and Liang-Choo Hsia

School of Electrical & Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798. exzhou@ntu.edu.sg

*Chartered Semiconductor Manufacturing Ltd.
60 Woodlands Industrial Park D, Street 2, Singapore 738406

10 - 12 May, 2005
Outlines

- Modeling methodology
- Model parameter extraction methodology
- Model calibration procedure
- Model verification
- Conclusion
Modeling Methodology

- MOSFET DC operation is governed by (input) “voltage equation” and (output) “current equation”.
- Formulated based on “pinned”-\(\phi_s (V_t\)-based). Single-piece \(I_{ds} \) is the sum of unified regional \(I_{d,str} \) and \(I_{d,sub} \).
- Single-piece extremely compact form. Incorporates all major SC/NW/HF effects into the effective quantities.
- Ensure model accuracy, symmetry and continuity.

\[
I_{ds} = \beta_n V_{ge} = \beta_n \left(V_{gg} + V_{gd} \right) = I_{drift} + I_{diff}
\]

\[
V_{ge} = f[V_g, V_d, V_s, V_b], \quad \beta_n = \mu_{eff} C_{ox} W_{eff} / L_{eff}
\]
Model Parameter extraction Methodology

- Model calibration has 2 stages:
 Technology characterization
 (Technology data, $V_t - L / W$)
 Device Characterization
 ($I-V$ data @ corner geometry/bias)

- Model parameters are characterized into 2 categories:
 Process-variable physical parameter (known)
 Process-dependent fitting parameter (“unknown”)

- One iteration, 10-step V_t and I_{ds} extraction procedure in a step-by-step sequence.
 Only 6 $I-V$ + technology data. One parameter set is used for predicting entire geometry/bias of the given technology.
Model Calibration Procedure (Technology characterization)

Step-by-step model parameters extraction

- 3 long-channel parameters
- 4 RSCE and SCEs parameters
- Point V_t data requirement:
 - $2 \ V_t - V_{bs} @ L_\infty$
 - $6 \ V_t - L_g @$ corners bias

Symbols: Measurement
Lines: Model (Xsim)

Solid Lines: Fitted
Dotted Lines: Predicted

(W = 10µm)
Model Calibration Procedure (Technology characterization)

- 1 NWE parameter
- Point V_t data requirement: $1 ~ V_t - W @ L_{\infty}$

- 3 NWEs and INWE parameters
- Point V_t data requirement: $1 ~ V_t - W @ L_{min}$
Model Calibration Procedure (Device Characterization)

1) Long-channel parameters
 (3 I–V @ corners bias)
 - 4 mobility parameters, μ_0
 - 1 lateral field effect parameter, μ_{eff0}
 - 1 tranverse field effect parameters, χ_b

2) Short-channel parameters
 (2 I–V @ corners bias)
 Point data $g_{ds} - L_g @ V_{ds} = 0; V_{gg}$
 - 2 series source/drain resistance
 - 1 CLM parameter
 - 1 $\delta_s[L_g]$ for V_{deff} function

3) Narrow-width channel parameters
 Point data $I_{dsat} - W @ L_\infty$
 - 1 coulombic factor, μ_f

4) Narrow-width channel parameters
 (1 I–V @ L_{mid})
 - 2 layout-dependent parameters

5) Narrow-width channel parameters
 Point data $I_{dsat} @ L_{min}$
 - 1 coulombic factor, μ_{f5}
I_{ds}-Model Validation with Measurement Data (L_∞)
I_{ds}-Model Validation with Measurement Data (L_{min})

WCM 2005

NTU / EEE

C.S. BEN 9 © 2005
I_{ds}-Model Validation with Measurement Data ($L_g = 0.3\mu m$)
I_{ds}-Model Validation with Measurement Data ($L_g = 0.3\mu m$)

WCM 2005

NTU / EEE
I_{ds}-Model Validation with Measurement Data ($L_g = 0.3\mu m$)
Conclusions

- **Modeling Methodology**
 - Single-piece explicit current model — include all major SC/NW/HF effects.
 - Extremely compact form — ensure symmetry, accuracy and continuity.

- **Model Parameter Extraction Methodology**
 - Technology/device characterization — “Non-binnable” model.
 - One iteration, 10-step V_t/I_{ds} extraction procedure in a *step-by-step* sequence
 - *Only 6 I–V + technology data.*

- **Predictability**
 - One parameter set is used for predicting entire geometry/bias of the given technology.