RF-MOSFET Model-Parameter Extraction with HiSIM

Workshop on Compact Modeling at MSM 2005

Mitiko Miura-Mattausch, N. Sadachika, H. J. Mattausch

Hiroshima University, Japan
*National Institute of Advanced Industrial Science and Technology, Japan
**Evolvable Systems Research Institute, Japan
***Semiconductor Technology Academic Research Center, Japan
****Toshiba I. S. Corporation, Japan
Outline

1. Requirements for Parameter Extraction and MOSFET Model
2. Advantageous of Surface-Potential-Based Modeling
3. Core Model Parameters of HiSIM
5. Automatic Parameter Extraction with Genetic Algorithm (GA)
6. Automatic Extraction Results
7. Summary
Accuracy Requirement
(aiming at accurate reproduction of measurements)

I-V measurements

Derivatives

meas.
model
Predictability Requirement
(aiming at accurate prediction of unmeasured data)

Derivatives
(for down-scaled gate length)

1/f Noise
Outline

1. Requirements for Parameter Extraction and MOSFET Model
2. Advantageous of Surface-Potential-Based Modeling
3. Core Model Parameters of HiSIM
5. Automatic Parameter Extraction with Genetic Algorithm (GA)
6. Automatic Extraction Results
7. Summary
Properties of a Surface-Potential-Based Model

\[\phi_{S0} : \text{at source side} \]
\[\phi_{SL} : \text{at drain side} \]

Surface-Potential \(\rightarrow\) Measure for All Device Features
Calculated Surface Potentials

Short-channel effects included in the ϕ_S calculation
Induced Charges on Nodes

\[
\begin{align*}
Q_I &= W \int_0^L Q_i(y) dy; \\
Q_B &= W \int_0^L Q_b(y) dy \\
Q_S &= W \int_0^L \left(1 - \frac{y}{L}\right) Q_i(y) dy; \\
Q_D &= W \int_0^L \frac{y}{L} Q_i(y) dy \\
Q_I &= Q_S + Q_D \\
Q_b(y) &= -qN_{sub} \times W_d = -\sqrt{\frac{2 \varepsilon_s q N_{sub}}{\beta}} \left\{ \beta \left(\phi_s(y) - V_{bs} \right) - 1 \right\}^{-\frac{1}{2}} \\
I_{ds} &= q \frac{W}{L} \int v Q_{id} dy
\end{align*}
\]

\[
C_{jk} = \frac{dQ_j}{dV_k}
\]

current charge capacitance
Valid Surface Potential for All Bias Conditions
Current Equations Based on Surface-Potential

Drift-Diffusion Approximation

\[
I_{ds} / \left(\frac{1}{\beta} \mu \frac{W}{L} \right) = C_{ox}(1+\beta V'_{G})(\phi_{SL} - \phi_{S0}) - \frac{\beta}{2} C_{ox}(\phi_{SL}^2 - \phi_{S0}^2)
- \frac{2}{3} \sqrt{\frac{2\varepsilon_s qN_{sub}}{\beta}} \left[(\beta \phi_{SL} - 1)^{\frac{3}{2}} - (\beta \phi_{S0} - 1)^{\frac{3}{2}} \right]
+ \sqrt{\frac{2\varepsilon_s qN_{sub}}{\beta}} \left[(\beta \phi_{SL} - 1)^{\frac{1}{2}} - (\beta \phi_{S0} - 1)^{\frac{1}{2}} \right]
\]

\[V'_G = V_{gs} - V_{fb} + (\Delta V_{th})\]

Drift Approximation:

\[
\phi_{S0} = 2\Phi_B = \frac{2}{\beta} \ln \left(\frac{N_{sub}}{n_i} \right) ; \quad \phi_{SL} = \phi_{S0} + V_{ds}
\]

\[
I_{ds} / \left(\mu \frac{W}{L} C_{ox} \right) = (V_G - 2\Phi_B - \frac{\sqrt{2\varepsilon_s qN_{sub}}}{C_{ox}} 2\Phi_B^{\frac{1}{2}}) V_{ds} - \left(\frac{1}{2} + \frac{\sqrt{2\varepsilon_s qN_{sub}}}{4C_{ox}} 2\Phi_B^{\frac{1}{2}} \right) V_{ds}^2
\]

\[\approx (V_G - V_{th}) V_{ds} - \frac{1}{2} V_{ds}^2\]

\[V_G = V_{gs} - V_{fb}\]
Low-Field Mobility Based on Surface Potential

\[\frac{1}{\mu_0} = \frac{1}{\mu_{CB}} + \frac{1}{\mu_{PH}} + \frac{1}{\mu_{SR}} \]

- \(\mu_{CB}\) (Coulomb) = \(MUECB0 + MUECB1 \frac{Q_i}{q \times 10^{11}}\)

- \(\mu_{PH}\) (phonon) = \(\frac{MUEPH0}{(T/300\,K)} \times \frac{MUETMP}{E_{eff}} \times MUEPH1\)

- \(\mu_{SR}\) (surface roughness) = \(\frac{MUESR0}{E_{eff}} \times MUESR1\)

\[E_{eff} = \frac{1}{\varepsilon_S} (NDEP \times Q_b + NINV \times Q_i) \]

\[NINV = NINV - NINV D \times V_{ds} \]

Model Parameters

Charges

Universality:

- \(MUEPH1 = 0.3\)
- \(MUESR1 = 2.0\)
- \(NDEP = 1.0\)
- \(NINV = 0.5\)

Mobility is a function of charges → Surface Potentials
Modeling of RF Effects with HiSIM

Requires usually no additional model parameters!

- Higher-Order Derivatives
- Carrier-Response Delay for Non-Quasi-Static Effects (negligible below $f_T/3$)
- $1/f$ Noise (trap density: nearly universal when technology is mature)
- Thermal Noise

Accurate model parameter extraction from I-V measurements is sufficient. However, RF-effect measurements may be used for parameter fine tuning.
Thermal Noise Prediction without Parameters

Solid Lines: Model (HiSIM), Parameter Extraction from I-V Data
Symbols: Measurements of Thermal Noise

No Extra Model Parameters: Parameters for measured I-V data only

Key: Knowledge of correct channel-potential distribution makes modeling of RF-MOSFET phenomena simple.
Outline

1. Requirements for Parameter Extraction and MOSFET Model
2. Advantageous of Surface-Potential-Based Modeling
3. Core Model Parameters of HiSIM
5. Automatic Parameter Extraction with Genetic Algorithm (GA)
6. Automatic Extraction Results
7. Summary
<table>
<thead>
<tr>
<th>Device Parameters (11)</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOX</td>
<td>oxide thickness</td>
<td>m</td>
</tr>
<tr>
<td>XLD</td>
<td>gate-overlap length</td>
<td>m</td>
</tr>
<tr>
<td>XWD</td>
<td>gate-overlap width</td>
<td>m</td>
</tr>
<tr>
<td>XPOLYD</td>
<td>gate-poly overlap length</td>
<td>m</td>
</tr>
<tr>
<td>TPOLY</td>
<td>height of the gatepoly-Si</td>
<td>m</td>
</tr>
<tr>
<td>RS</td>
<td>source-contact resistance</td>
<td>V A⁻¹m</td>
</tr>
<tr>
<td>RD</td>
<td>drain-contact resistance</td>
<td>V A⁻¹m</td>
</tr>
<tr>
<td>NSUBC</td>
<td>substrate-impurity concentration</td>
<td>cm⁻³</td>
</tr>
<tr>
<td>NSUBP</td>
<td>maximumpocket concentration</td>
<td>cm⁻³</td>
</tr>
<tr>
<td>VFBC</td>
<td>flat-band voltage</td>
<td>V</td>
</tr>
<tr>
<td>LP</td>
<td>pocket penetration length</td>
<td>m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature Dependence (2)</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGTP1</td>
<td>bandgap narrowing</td>
<td>eVK⁻¹</td>
</tr>
<tr>
<td>BGTP2</td>
<td>bandgap narrowing</td>
<td>eVK⁻²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantum Effect (3)</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>QME1</td>
<td>coefficient for quantum mechanical effect</td>
<td>V m</td>
</tr>
<tr>
<td>QME2</td>
<td>coefficient for quantum mechanical effect</td>
<td>V</td>
</tr>
<tr>
<td>QME3</td>
<td>coefficient for quantum mechanical effect</td>
<td>m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poly Depletion (3)</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGD1</td>
<td>strength of poly depletion</td>
<td>V</td>
</tr>
<tr>
<td>PGD2</td>
<td>threshold voltage of poly depletion</td>
<td>V</td>
</tr>
<tr>
<td>PGD3</td>
<td>V_{ds} dependence of poly depletion</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel-Length Modul. (3)</th>
<th>Description</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLM1</td>
<td>channel/contact junction condition</td>
<td>—</td>
</tr>
<tr>
<td>CLM2</td>
<td>coefficient for Q_B contribution</td>
<td>—</td>
</tr>
<tr>
<td>CLM3</td>
<td>coefficient for Q_I contribution</td>
<td>—</td>
</tr>
</tbody>
</table>
Short Channel (7)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARL2</td>
<td>depletion width of channel/conta junction</td>
<td>m</td>
</tr>
<tr>
<td>SC1</td>
<td>short-channel coefficient 1</td>
<td>V⁻¹</td>
</tr>
<tr>
<td>SC2</td>
<td>short-channel coefficient 2</td>
<td>V⁻²</td>
</tr>
<tr>
<td>SC3</td>
<td>short-channel coefficient 3</td>
<td>V⁻²m</td>
</tr>
<tr>
<td>SCP1</td>
<td>short-channel coefficient 1 for pocket</td>
<td>V⁻¹</td>
</tr>
<tr>
<td>SCP2</td>
<td>short-channel coefficient 2 for pocket</td>
<td>V⁻²</td>
</tr>
<tr>
<td>SCP3</td>
<td>short-channel coefficient 3 for pocket</td>
<td>V⁻²m</td>
</tr>
</tbody>
</table>

Mobility (16)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUECB0</td>
<td>Coulomb scattering</td>
<td>cm²V⁻¹s⁻¹</td>
</tr>
<tr>
<td>MUECB1</td>
<td>Coulomb scattering</td>
<td>cm²V⁻¹s⁻¹</td>
</tr>
<tr>
<td>MUEPH0</td>
<td>phonon scattering *** 0.3</td>
<td>cm²(V s)⁻¹(V cm)⁻¹</td>
</tr>
<tr>
<td>MUEPH1</td>
<td>phonon scattering</td>
<td>—</td>
</tr>
<tr>
<td>MUETMP</td>
<td>temperature dependence</td>
<td>—</td>
</tr>
<tr>
<td>MUESR0</td>
<td>surface-roughness scattering *** 2.0</td>
<td>—</td>
</tr>
<tr>
<td>MUESR1</td>
<td>surface-roughness scattering</td>
<td>—</td>
</tr>
<tr>
<td>NDEP</td>
<td>coefficient of effective-electric field *** 1.0</td>
<td>V⁻¹</td>
</tr>
<tr>
<td>NINV</td>
<td>coefficient of effective-electric field *** 0.5</td>
<td>—</td>
</tr>
<tr>
<td>NINVD</td>
<td>modification of NINV</td>
<td>—</td>
</tr>
<tr>
<td>BB</td>
<td>high-field-mobility degradation *** 2.0</td>
<td>—</td>
</tr>
<tr>
<td>VMAX</td>
<td>maximum saturation velocity</td>
<td>—</td>
</tr>
<tr>
<td>VOVER</td>
<td>velocity overshoot effect</td>
<td>cm⁻¹</td>
</tr>
<tr>
<td>VOVERP</td>
<td>Lg dependence of velocity overshoot</td>
<td>—</td>
</tr>
<tr>
<td>RPOCK1</td>
<td>resistance caused by the potential barrier</td>
<td>V⁻²A⁻¹m¹/²</td>
</tr>
<tr>
<td>RPOCK2</td>
<td>resistance caused by the potential barrier</td>
<td>—</td>
</tr>
</tbody>
</table>
Outline

1. Requirements for Parameter Extraction and MOSFET Model
2. Advantageous of Surface-Potential-Based Modeling
3. Core Model Parameters of HiSIM
5. Automatic Parameter Extraction with Genetic Algorithm (GA)
6. Automatic Extraction Results
7. Summary
Manual Extraction: Basic Procedure

• Start from a long L_{gate} transistor
 - extract basic technological parameters

• Use V_{th} for rough extraction

• Use $I_{\text{ds}} - V_{\text{gs}}$ characteristics for exact extraction

• Final parameter extraction with short L_{gate}
 - fine tuning of parameters

For each group one additional transistor to check predictability
Manual Extraction: Remarks

- **Separate Extraction Programs**
 (Possible due to low parameter interdependence)
 - quantum-mechanical effects
 - gate-poly depletion effects

- **Local Optimizations**
 (Physical parameters: affected range of measured data is known)
 - start with default parameter values (often nearly optimal)
 - observe the valid optimization region
 - max and min values of the physical parameters
 - stick to correct optimization sequence

- **Repeat Extraction Procedures**
 to obtain increasingly reliable device parameter values

 \((NSUBS, NSUBP, LP \text{ etc.}) \)
(1) Device Parameters + Quantum + Poly Depletion + Short-Channel Effects

(2) Device + Low-Field Mobility

(3) All Mobility Parameters
Outline

1. Requirements for Parameter Extraction and MOSFET Model
2. Advantageous of Surface-Potential-Based Modeling
3. Core Model Parameters of HiSIM
5. Automatic Parameter Extraction with Genetic Algorithm (GA)
6. Automatic Extraction Results
7. Summary
Principle Extraction with Genetic Algorithm
(Parameters are Treated as Genes in Chromosomes)

(a) Initial Population

(b) Crossover & Mutation

(c) Optimized Population

Advantages:
• Total optimization is possible.
• No initial parameter set is required.
• No knowledge about models is required.
Device

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOX</td>
<td>oxidation thickness</td>
</tr>
<tr>
<td>XLD</td>
<td>gate-overlap length</td>
</tr>
<tr>
<td>XWD</td>
<td>gate-overlap width</td>
</tr>
<tr>
<td>XPOLYD</td>
<td>gate-poly overlap</td>
</tr>
<tr>
<td>TPOLY</td>
<td>height of the gate poly-Si</td>
</tr>
<tr>
<td>RS</td>
<td>source-contact resistance</td>
</tr>
<tr>
<td>RD</td>
<td>drain-contact resistance</td>
</tr>
<tr>
<td>NSUBC</td>
<td>substrate-impurity concentration</td>
</tr>
<tr>
<td>NSUBP</td>
<td>maximum pocket concentration</td>
</tr>
<tr>
<td>VFBC</td>
<td>flat-band voltage</td>
</tr>
<tr>
<td>LP</td>
<td>pocket penetration length</td>
</tr>
</tbody>
</table>

Short Channel

<table>
<thead>
<tr>
<th>Short Channel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARL2</td>
<td>depletion width: channel/contact</td>
</tr>
<tr>
<td>SC1</td>
<td>short-channel coefficient 1</td>
</tr>
<tr>
<td>SC2</td>
<td>short-channel coefficient 2</td>
</tr>
<tr>
<td>SC3</td>
<td>short-channel coefficient 3</td>
</tr>
<tr>
<td>SCP1</td>
<td>pocket short-channel coefficient 1</td>
</tr>
<tr>
<td>SCP2</td>
<td>pocket short-channel coefficient 2</td>
</tr>
<tr>
<td>SCP3</td>
<td>pocket short-channel coefficient 3</td>
</tr>
</tbody>
</table>

Mobility

<table>
<thead>
<tr>
<th>Mobility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUECB0</td>
<td>Coulomb scattering</td>
</tr>
<tr>
<td>MUECB1</td>
<td>Coulomb scattering</td>
</tr>
<tr>
<td>MUEPH0</td>
<td>phonon scattering 0.3</td>
</tr>
<tr>
<td>MUEPH1</td>
<td>phonon scattering</td>
</tr>
<tr>
<td>MUETMP</td>
<td>temperature dependence</td>
</tr>
<tr>
<td>MUESR0</td>
<td>surface-roughness scattering 2.0</td>
</tr>
<tr>
<td>MUESR1</td>
<td>surface-roughness scattering</td>
</tr>
<tr>
<td>NDEP</td>
<td>effective-electric field 1.0</td>
</tr>
<tr>
<td>NINV</td>
<td>effective-electric field 0.5</td>
</tr>
<tr>
<td>NINVD</td>
<td>modification of NINV</td>
</tr>
<tr>
<td>BB</td>
<td>high-field mobility 2.0</td>
</tr>
<tr>
<td>VMAX</td>
<td>saturation velocity</td>
</tr>
<tr>
<td>VO</td>
<td>velocity overshoot</td>
</tr>
<tr>
<td>VOVERP</td>
<td>velocity overshoot</td>
</tr>
<tr>
<td>RPOCK1</td>
<td>pocket resistance</td>
</tr>
<tr>
<td>RPOCK2</td>
<td>pocket resistance</td>
</tr>
</tbody>
</table>

- **Fixed (in basic extraction)**
- **Red**: Group A (6)
- **Green**: Group B (26)
2-Stage Extraction Procedure

[Stage 1]
Parameter Group A: a_1, a_2, \ldots
Surface Potential
Simulated Device Performance
Measurements A

[Stage 2]
Parameter Group B: b_1, b_2, \ldots
Surface Potential
Simulated Device Performance
Measurements A+B
Error is small?
YES
Error is small?
YES
Stop
Outline

1. Requirements for Parameter Extraction and MOSFET Model
2. Advantageous of Surface-Potential-Based Modeling
3. Core Model Parameters of HiSIM
5. Automatic Parameter Extraction with Genetic Algorithm (GA)
6. Automatic Extraction Results
7. Summary
2-Stage in Comparison to 1-Stage Extraction

![Graph showing Fitness vs. Evaluations (x10000)]
I-V Results for Long Channel Transistor

$L_g = 10 \mu m$

$V_{ds} = 0.1 V$

$V_{bs} = 0.0 V$
-0.5 V
-1.0 V
-1.5 V

$V_{gs} (V)$

$log (I_{ds}) (A)$

Meas

HiSIM

$V_{bs} = 0.0 V$

$V_{gs} = 1.5 V$

$V_{gs} = 1.0 V$

$V_{gs} = 0.5 V$

$V_{gs} = 0.0 V$

$V_{ds} (V)$

$I_{ds} (A)$
I-V Results for Short Channel Transistor

$L_g=0.11\mu m$

- $V_{ds}=0.1V$
- $V_{bs}=0.0V$
- $V_{bs}=-0.5V$
- $V_{bs}=-1.0V$
- $V_{bs}=-1.5V$

Measurements (Meas) vs HiSIM Simulations
Error Comparison

Devices used for Extraction

<table>
<thead>
<tr>
<th>$L_g (\mu m)$</th>
<th>0.11</th>
<th>0.13</th>
<th>0.5</th>
<th>2.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Err. (%)</td>
<td>0.93</td>
<td>0.79</td>
<td>0.41</td>
<td>0.62</td>
<td>0.74</td>
</tr>
<tr>
<td>Max Err. (%)</td>
<td>2.59</td>
<td>2.52</td>
<td>1.51</td>
<td>1.69</td>
<td>2.02</td>
</tr>
<tr>
<td>Min Err. (%)</td>
<td>-2.51</td>
<td>-2.52</td>
<td>-1.86</td>
<td>-2.25</td>
<td>-2.71</td>
</tr>
</tbody>
</table>

Devices not used for Extraction

<table>
<thead>
<tr>
<th>$L_g (\mu m)$</th>
<th>0.12</th>
<th>0.3</th>
<th>1.0</th>
<th>5.0</th>
<th>15.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Err. (%)</td>
<td>0.79</td>
<td>0.49</td>
<td>0.50</td>
<td>0.71</td>
<td>0.75</td>
</tr>
<tr>
<td>Max Err. (%)</td>
<td>2.60</td>
<td>1.94</td>
<td>1.43</td>
<td>1.90</td>
<td>2.06</td>
</tr>
<tr>
<td>Min Err. (%)</td>
<td>-2.56</td>
<td>-1.39</td>
<td>-2.06</td>
<td>-2.60</td>
<td>-2.75</td>
</tr>
</tbody>
</table>

Error = \(\frac{(I_{ds,\text{model}} - I_{ds,\text{meas}})}{I_{ds,\text{meas}}} \)
Reliability Test of GA Extraction: Group A

Group A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Error rate</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$vfbc$</td>
<td>0.88%</td>
<td>0.37%</td>
</tr>
<tr>
<td>$nsubc$</td>
<td>0.46%</td>
<td>0.04%</td>
</tr>
<tr>
<td>$muecb0$</td>
<td>4.58%</td>
<td>3.01%</td>
</tr>
<tr>
<td>$muecb1$</td>
<td>10.5%</td>
<td>10.3%</td>
</tr>
<tr>
<td>$mueph1$</td>
<td>5.06%</td>
<td>0.24%</td>
</tr>
<tr>
<td>$muesr1$</td>
<td>2.74%</td>
<td>0.82%</td>
</tr>
</tbody>
</table>

Error = \(\frac{(Parameter_{GA} - Parameter_{Manual})}{Parameter_{Manual}} \)
Reliability Test of GA Extraction: Group B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Error Rate</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>xld*</td>
<td>—</td>
<td>33.6%</td>
</tr>
<tr>
<td>nsubp*</td>
<td>0.24%</td>
<td>0.03%</td>
</tr>
<tr>
<td>scp1</td>
<td>35.0%</td>
<td>4.78%</td>
</tr>
<tr>
<td>scp2*</td>
<td>—</td>
<td>26.8%</td>
</tr>
<tr>
<td>scp3*</td>
<td>146%</td>
<td>19.0%</td>
</tr>
<tr>
<td>parl2</td>
<td>0.78%</td>
<td>0.82%</td>
</tr>
<tr>
<td>sc1</td>
<td>19.2%</td>
<td>3.76%</td>
</tr>
<tr>
<td>sc2</td>
<td>71.3%</td>
<td>3.02%</td>
</tr>
<tr>
<td>sc3*</td>
<td>137%</td>
<td>25.2%</td>
</tr>
<tr>
<td>qme1*</td>
<td>—</td>
<td>11.5%</td>
</tr>
<tr>
<td>qme2</td>
<td>—</td>
<td>72.7%</td>
</tr>
<tr>
<td>qme3</td>
<td>—</td>
<td>63.7%</td>
</tr>
<tr>
<td>pgd1*</td>
<td>453%</td>
<td>13.9%</td>
</tr>
<tr>
<td>pgd2*</td>
<td>—</td>
<td>105%</td>
</tr>
<tr>
<td>pgd3*</td>
<td>993%</td>
<td>46.8%</td>
</tr>
<tr>
<td>rs,d</td>
<td>8.82%</td>
<td>8.48%</td>
</tr>
<tr>
<td>rPOCH1*</td>
<td>1.65%</td>
<td>1.78%</td>
</tr>
<tr>
<td>rPOCH2*</td>
<td>—</td>
<td>42.7%</td>
</tr>
<tr>
<td>ninvd*</td>
<td>—</td>
<td>62.7%</td>
</tr>
<tr>
<td>vmax*</td>
<td>1.05%</td>
<td>0.49%</td>
</tr>
<tr>
<td>vover</td>
<td>47.2%</td>
<td>42.7%</td>
</tr>
<tr>
<td>voverp</td>
<td>12.3%</td>
<td>13.9%</td>
</tr>
<tr>
<td>cLM1*</td>
<td>54.1%</td>
<td>75.7%</td>
</tr>
<tr>
<td>cLM2*</td>
<td>29.3%</td>
<td>36.1%</td>
</tr>
<tr>
<td>cLM3*</td>
<td>—</td>
<td>27.2%</td>
</tr>
</tbody>
</table>

* : extracted with log scale

Parameters with small sensitivity

Large error (deviation) in comparison to manual extraction
Summary

- HiSIM enables easy and reliable parameter extraction, due to low parameter interdependence.

- The capacitance model is automatically self-consistent with the I-V model and free from additional parameters.

- Reproduction of RF-related phenomena requires (almost) no additional model parameters. Model parameters determined from I-V characteristics are usually sufficient.

- HiSIM’s parameter extraction can be automated on the basis of a genetic-algorithm approach, delivering parameter sets of the same or better quality than the human expert.
Parameter List-1

Device Parameters (13)
- TOX: oxide thickness
- XLD: gate-overlap length
- XWD: gate-overlap width
- TPOLY: poly-Si height
- RS: source resistance
- RD: drain resistance
- NSUBC: substrate conc.
- NSUBP: pocket conc.
- LP: pockcet extension length
 - NSUBP0: shadowing effect
- NSUBPW:
 - NPEXT: pocket tail
 - LPEXT: tail extension

STI Effect (4)
- WSTI: STI width
- NSTI: impurity conc.
- VTHSTI: threshold voltage
- VSCSTI: short-channel effect

Material Features (4)
- EG0: bandgap
- VFB: flat-band voltage
- VBI: built-in potential
- VMAX: maximum velocity

Quantum Effect (3)
- QME1: Vgs depend
- QME2: minimum ∆Tox
- QME3: subthreshold

Temperature Dependent (4)
- BGTMP1: bandgap 1
- BGTMP2: bandgap 2
- MUETMP: mobility
- VTMP: velocity

Poly-Dep Effect (4)
- PGD1: strength
- PGD2: threshold voltage
- PGD3: Vds dependence
 - PGD4: length dependence

Noise Characteristics (2)
- NFALP: 1/f noise due to mobility
- NFTRP: trap density for 1/f
Parameter List-2

Short-Channel Effects (11)
- PARL2: depletion width
- SC1: strength
- SC2: DIBL
- SC3: vertical profile
- SCP1: SC1 of pocket
- SCP2: SC2 of pocket
- SCP3: SC3 of pocket
 - SCP21: DLBL reduction
 - SCP22: threshold for reduction
- BS1: vertical inhomogeneity
- PTHROU: subthreshold

Narrow-Channel Effects (2)
- WFC: Qb change
- WVTH0: Vth shift

MobilitySmall Geometry (3)
- WL0: size for small
- WL1: correction
- WLP:

Mobility (19)
- MUECB0: Coulomb
- MUECB1:
- MUEPH0: phonon (0.3)
- MUEPH1:
 - MUEPHW: STI stress
 - MUEPWP:
 - MUEPHL: length dependence
 - MUEPLP:
- MUESR0: surface roughness (2.0)
- MUESR1:
 - MUESRW: STI stress
 - MUESWP:
 - MUESRL: inversion thickness
 - MUESLP:
 - MUEPHS: small size
 - MUEPSP:
- NDEP: Qb contribution (1.0)
- NINV: Qi contribution (0.5)
- BB: high field (2.0)
Parameter List-3

Channel Length Modul (3)
- CLM1: junction
- CLM2: Q_b contribution
- CML3: Q_i contribution

Pocket Resistance (4)
- RPOCK1:
- RPOCK2:
- RPOCH1:
- RPOCH2:

Velocity (2)
- VOVER: overshoot
- VOVERP:

Substrate Current (4)
- SUB1:
- SUB2:
- SUB3:
- SUB4:

Gate Current (14)
- GLEAK1: gate to channel
- GLEAK2:
- GLEAK3:
- GLEAK4:
- GLEAK5:
- GLEAK6:
- GLKS1: gate to source
- GLKS2:
- GLKS3:
- GLKD1: gate to drain
- GLKD2:
- GLKD3:
- GLKB1: gate to bulk
- GLKB2:

Diode (11)
- JS0:
- JS0SW:
- XTI:
- NJS:
- NJSW:
- CJ:
- CJSW:
- CJSWG:
- MJ:
- MJSW:
- MJSWG

GIDL Current (3)
- GIDL1:
- GIDL2:
- GIDL3:

Totally 115 (78) Model Parameters