Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Nanotube Stochastic Resonance: Noise-enhanced Detection of Subthreshold Signals

I.Y. Lee, X. Liu, B. Kosko and C. Zhou
University of Southern California, US

Keywords: carbon nanotubes, transistor, noise,

Abstract:
Noise can help signal detection at the nano-level. Experiments on a single-walled carbon nanotube transistor confirm that a threshold is sufficient for a nondynamical system to exhibit stochastic resonance: a judicious amount of noise can help a threshold-like nanotube transistor detect subthreshold signals while large amounts of noise wiped out the signals. The nanotube produced this stochastic-resonance effect using three types of synchronized discrete-time white noise and two performance measures: mutual information and input-output correlation. The experiments added Gaussian, uniform, and impulsive (Cauchy) noise. The electrical noise corrupted a random digital (Bernoulli) voltage sequence that acted as the subthreshold input for the nanotube transistor. The noisy signal stimulated the transistor's gate and produced a sequence of random output (Bernoulli) current in the nanotube. Shannon's mutual information and simple correlation measured the nanotube system's performance gain by comparing the input and output sequences. Both measures made no assumptions on the nanotube to ensure that the nanotube system generated the threshold stochastic resonance. This nanotube SR-effect was robust: it persisted even when infinite-variance Cauchy noise corrupted the signal stream. Such noise-enhanced signal processing at the nano-level promises applications to signal detection in wideband communication systems and biological and artificial neural networks.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact