Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

RNA Polymerase as an Information-Dependent Molecular Motor

R.T. Pomerantz, M. Anikin, J. Zlatanova and W.T. McAllister
SUNY Downstate Medical Center, US

Keywords: molecular Motor, RNA Polymerase, nanodevice

Abstract:
RNA Polymerase (RNAP) is a powerful biomolecular machine whose motion along DNA can be controlled in an information-dependent manner with nanometer scale precision. As RNAP copies the information in the DNA template to RNA it translocates along the DNA, exerting a linear force of 15-20 pN. This forward motion is dependent on the presence of the next incoming ribonucleotide triphosphate (NTP), which is encoded by the DNA template strand sequence. Withholding the required NTP results in the formation of a stable halted elongation complex in which the enzyme remains statically bound to the DNA template until transcription is resumed by addition of substrate. Immobilizing RNAP to a solid surface, such as Ni2+-agarose beads, confers the ability to limit the mixture of substrates for each polymerization step, which can be as small as 1 base-pair or 0.34 nm. In this manner, RNAP can be incrementally 'walked' or positioned along DNA with nanometer scale precision. Here we utilize modified versions of bacteriophage T7 RNAP, which contain ligand-binding motifs fused to the amino-terminus of the enzyme, in order to facilitate controlled movement and positioning of biomolecules and nanodevices. Self-assembly of novel DNA nanodevices driven by modified T7 RNAP are demonstrated by atomic force microscopy (AFM).

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact