Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Pumping Capacity and Reliability Study on Silicon-Based Cryogenic Micro Pump

Y. Zhao, B. Li, D. Ludlow and X. Zhang
Boston University, US

Keywords: micro pump, pumping capacity, silicon reliability

Abstract:
As part of a program to develop a cooling system for satellite instrumentation capable of working at cryogenic temperature, we present herein pumping capacity and material reliability study on a silicon-based cryogenic micro pump which will be applied into a future cooling system to satisfy both active and remote cooling requirements. A test rig for actuating silicon diaphragm, the main functional component of the micro pump, was built by using compressive gas actuation. A Dewar was utilized to cool the diaphragm down to cryogenic temperature. The deflection of silicon diaphragms was measured using both WYKO and ZYGO interferometer. As a result, pumping capacity was derived. The maximum deflection of the silicon diaphragm was found to vary linearly with differential pressure, and the pumping capacity decreased at the cryogenic temperature. Additionally, micro-Raman spectroscopy was employed for stress mapping. As expected, the diaphragm edge centers are most vulnerable to fracture. Finally, a cryogenic fatigue test was conducted. The diaphragm suffered no damage during 106 cycles for ~10 days, thereby demonstrating the viability of the silicon-based system for space applications.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact