Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

High Resolution Backside Imaging and Thermography using a Numerical Aperature Increasing Lens

M.S. Ünlü, S.B. Ippolito, M.G. Eraslan, S.A. Thorne, A. Vamivakas, B.B. Goldberg and Y. Leblebici
Boston University, US

Keywords: thermal imaging, high-resolution, failure analysis, solid immersion lens

Abstract:
Nanoscale imaging of defects in ICs is a great current technological challenge as IC feature sizes continue to shrink. We have developed novel techniques based on a Numerical Aperture Increasing Lens (NAIL) to study semiconductors at very high spatial resolution. The NAIL is placed on the surface of a sample and its convex surface effectively transforms the NAIL and the planar sample into an integrated solid immersion lens. Addition of the NAIL to a standard microscope increases the NA by a factor of square of the index n, to a maximum of NA = n. In silicon, the NA is increased by a factor of 13, to NA = 3.6. The spatial resolution improvement laterally is about a factor of 4 while longitudinally it is a factor of 12.5 corresponding to an overall reduction of the volume of interrogation by a factor of 50. Subsurface solid immersion microscopy can be applied to thermal imaging of blackbody radiation at IR wavelengths. We have designed, built, and demonstrated the use of a subsurface solid immersion microscope with capability for confocal imaging in 3-5µm wavelength range and demonstrated a resolution of 1.4µm, representing the highest resolution subsurface thermography to date.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact