Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Hybrid MD-PNP Simulations of the Alpha-Hemolysin Open Ion Currents

I. Cozmuta, J.T. O'Keeffe and V. Stolc
Eloret Corp, NASA Ames Research Center, US

Keywords: ionic current, alpha hemolysin, molecular dynamics, Poisson Nernst Planck theory, ion channel

Abstract:
Recent experimental studies have used the alpha hemolysin protein as a model system to decipher ionic signature patterns in the genetic code of nucleic acids. These studies show that single stranded nucleic acids polymers can be transported across an alpha hemolysin channel under the action of an applied electric field. The translocation of the nucleic acid polymers causes transient blockades in the ion current. However, the physical and chemical details of the interactions between polymer, channel and ionic solution that lead to the blockade events are not yet fully understood. The goal of the present work is to link atomistic and PNP simulations into a hybrid model to predict the alpha hemolysin open channel ion current. The model channel consists of a rigid, reduced atomistic representation of the pore with polar walls. In the MD simulations, the channel is inserted in a 1MKCl solution and an electric field was uniformly applied. All simulations were conducted using the Amber force field and the NAMD software NASA-ARC supercomputers. The diffusion coefficients of the ions inside the protein channel were calculated and input in the PNP model. The calculated value of 101pA is in good agreement with the experimental measured value of 120pA.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact