Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

A Technology-Independent Model for Nanoscale Logic Devices

M.P. Frank
University of Florida, US

Keywords: compact models, nanocomputing, quantum device models, fundamental limits, reversible computing

Abstract:
In this paper we describe a class of technology-independent nano-device models, motivated from fundamental physical considerations, and give some examples of their applications in nanocomputer architecture and systems engineering. These models rest on recent insights on the fundamental physics of computing, such as close identities between energy and the rate of physical computing, and between temperature and the update frequency of physical bits. So, for example, a subsystem at room temperature can never flip bits faster than 9 THz, only 3,000 times faster than today. Going faster will require highly isolated computational degrees of freedom and will enable reversible and quantum-coherent device principles to be applied. One interesting consequence of these models is that even leakage-prone field-effect technologies have no fundamental limit on their entropy generation per bit-operation if adiabatic techniques are applied, and the redundancy of the bit encoding is raised while the quality (Q factor) is increased. Whether Q itself has a fundamental upper limit is still an open research problem.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact