Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Finite-Size Effects and Surface-Enhanced Raman Scattering from Molecules Adsorbed on Noble-Metal Nanoparticles

V.N. Pustovit, K.M. Walker and T.V. Shahbazyan
Jackson State University, US

Keywords: nanoparticles, sers, single-molecule spectroscopy

Abstract:
We study theoretically the role of strong electron confinement on surface-enhanced Raman scattering (SERS) from molecules adsorbed on metal nanoparticles. We describe a novel enhancement mechanism, relevant for nanometer-sized noble-metal particles, which originates from different effect that confining potential has on sp-band and d-band electrons. Namely, the spillout of delocalized sp-electrons beyond the classical nanoparticle boundary results in an incomplete embedding of sp-electron distribution in the background of localized d-electrons whose density profile follows more closely the classical shape. We show that a reduction of d-electron screening in the surface layer leads to the enhancement of the surface plasmon local field acting on a molecule located in a close proximity to metal surface. This results in the additional enhancement of the Raman signal which becomes more pronounced for small nanoparticles due to the larger ratio of surface layer to overall nanoparticle size. Our numerical calculations of Raman enhancement factor, performed using two-region model, indicate a significant increase of SERS as compared to previous electromagnetic model calculations.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact