Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Numerical Modeling of a Piezoelectric Micropump

R. Schlipf, K. Haghighi and R. Lange
Purdue University, US

Keywords: FEA, numerical modeling, simulation, piezoelectric, micropump

Abstract:
An effective description and an accurate understanding of any pumping mechanism is critical, especially of the micro scale. With the existence of a comprehensive and adaptable model, accurate preproduction predictions of performance are realized. Optimal geometries and operating parameters may be determined without the need for expensive prototyping. A three-dimensional FEA approach for parametric design and optimization of a piezoelectrically actuated membrane micropump is presented. The model includes the piezoelectric material, membrane, pumping chamber, and valves. This numerical representation includes electro-mechanical coupling for piezoelectric actuation as well as consideration of fluid-structural interaction. Transient consideration of electrical, mechanical, and fluidic effects is included. The effects of independent factors such as component geometry, backpressure, and excitation voltage and frequency are each evaluated. Results are obtained by using an iterative finite element procedure. Attempts in the literature show only a 2D pump, but results were not compared with experimental data (Nguyen, 2001) as well as two and three dimensional valve models which are not attached to an operational pump (Olsson, 2000). Outputs include membrane deflection, flow pattern and velocities, and volumetric flow rate. Results will be compared with experimental data available in the literature.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact