Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Biomimetic Molecules as Building Blocks for Synthetic Muscles - A Proposal

A.H. Flood, J. Badjic, J-Y Han, C. Pentecost, B.H. Northrop, S.J. Cantrill, K.N. Houk and J.F. Stoddart
UCLA and CNSI, US

Keywords: interlocked molecules, motor-molecules, NEMS, self-organization, switches

Abstract:
Biomolecular motors are natures machines that convert chemical energy into mechanical work. The performance and scale of these systems are believed to derive from their precise positioning and alignment into organized hierarchical levels at the nanoscale. The goal of this proposal is to cast the biological properties as the cornerstone for designing wholly artificial motor-molecules to serve as the building blocks for synthetic muscles. At the level of the single molecule, the artificial machines will be constructed from chemically powered motor-molecules with mechanically interlocked components, obtained from the template-directed synthesis that exploits molecular recognition and self-assembly processes, analogous to those employed in nature. On the molecular ensemble level, the motor-molecules will be outfitted with recognition units to facilitate the coherent self-organization onto surfaces to enable the cooperative operation of each motor-molecule in unison with chemical energy to perform mechanical work at the meso scale. These structures could be stacked to form to amplify the contraction. These systems could behave as muscle tissue to serve as a standard module for analogous applications. In the first phase of this work, the synthesis of the motor-molecules for attachment to surfaces is proposed, together with demonstrable nanoscale actuation as the target deliverable.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact