Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

System-Level Optical Interface Modeling for Microsystems

T.P. Kurzweg, A.S Sharma, S.K. Bhat, S.P. Levitan, D.M. Chiarulli
Drexel University, US

Keywords: angular spectrum, semi-vector, Fresnel coefficients, FDTD, system-level simulation

Abstract:
In this paper, we present an accurate and computationally efficient system-level optical propagation technique suitable for the modeling of optical interfaces. Our technique is based on extensions to the angular spectrum technique used to solve the Rayleigh-Sommerfeld formulation. By using a FFT, the angular spectrum technique is efficient and suitable for system-level modeling of the complete system. To support the reflection and transmission at optical interfaces, we implement a semi-vector technique, taking into account the polarization of the optical wavefront. The polarization is used to determine the reflection and transmission coefficients through the use of Berremans 4x4 matrix. Solutions are provided for typical TE and TM waves, however, wavefronts with arbitrary linear polarization are also supported. In this paper, we present a system-level simulation of a Silicon on Sapphire (SOS) interface.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact