Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

New Accurate 3-D Finite Element Technology for Solving Geometrically Complex Coupled-Field Problems

I. Avdeev, M. Gyimesi, M. Lovell and D. Ostergaard
University of Pittsburgh, US

Keywords: strong coupling, 3-D modeling, MEMS, FEA

Abstract:
Increased functionality of microelectromechanical systems (MEMS) has lead to the development of micro-scale devices that are geometrically complex. These complex configurations require the development of new and more efficient finite element (FE) techniques for modeling MEMS devices. This is primarily due to the fact that lumped modeling and semi-analytical approaches are not applicable for complicated geometries where fringing electrostatic fields are dominant. In the present investigation, a novel strongly coupled 3-D tetrahedral transducer element is introduced for modeling the quasi-static behavior of analog electrostatic MEMS devices. This new transducer element, which can be utilized for a broad range of micro-system applications (i.e. combdrives, micromirrors, and electrostatic motors), is compatible with conventional electrostatic and structural 3-D finite elements. The element is capable of efficiently modeling interaction between deformable or rigid conductors that generate an electrostatic field. Strong coupling between the electrostatic and mechanical domains allows the static element formulation to be extended to transient and full harmonic analyses. Therefore, in many respects, the element is the most sophisticated FEA tool available for modeling MEMS problems where dominant fringing fields develop. The new technology is also very efficient in determining the pull-in parameters of complicated multi-electrode microdevices.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact