Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Computationally Efficient Dynamic Modeling of MEMS

D.O. Popa, J. Critchley, M. Sadowski, K.S. Anderson and G. Skidmore
Rensselaer Polytechnic Institute, US

Keywords: O(N) dynamic simulation, nodal analysis

Abstract:
Traditional modeling work in MEMS includes simplified PDE/ODE formulation, based on physical principles, and Finite Element Analysis. More recently, reduced order modeling techniques using Krylov subspace decomposition have been proposed in the context of nodal analysis [1]. This modeling technique makes it possible to predict the dynamic behavior of more complex MEMS, but the computational engine is still a traditional O(N) solver. In this paper we apply a new modeling approach for complex MEMS based on a linear O(N+M) (N- number of bodies, M number of constraints) solver for rigid multibody dynamics. As direct applications, we present simulation and experimental results of models for thermally driven MEMS actuators, compared against other simulation tools, namely FEA (Intellisuite), Sugar 3.0, and AUTOLEV.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact