Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Numerical Analysis of Nano-imprinting Process Based on Continuum Hypothesis

H.C. Kim, Y.S. Woo, W.I. Lee, S.I. Oh and B.S. Kim
School of Mechanical and Aerospace Engineering, Seoul National University., KR

Keywords: nanoimprint, surface tension effect, slip, numerical simulation

Abstract:
Nano-imprint lithography (NIL) is a processing tech-nique capable of transferring nano-scale patterns onto a thin film of thermoplastics such as polymethyl methacrylate (PMMA). Feature sizes down to 10 nm have been demonstrated to be made possible using this process. In NIL, it is imperative to thoroughly understand the flow of resin to ensure complete transfer of the pattern. Due to the size of the pattern, experimental observation may be very difficult, if not totally impossible. In this study, a numerical simulation tool to calculate the two dimensional resin flows and heat transfer during NIL has been developed. The code is based on the continuum hypothesis with some modify-cation to accommodate the size effect, such as slip along the boundary. In order to fully account for the surface tension effect, which may play a dominant role, a moving grid system is adopted. Numerical simulations have been performed for different sets of process parameters. Parametric study shows that the surface tension effect indeed is a dominant factor. With change in the values of the surface tension as well as the contact angle, filling patterns and the resulting free surface become different.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact