Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2004 NSTI Nanotechnology Conference & Trade Show
Nanotech 2004
BioNano 2004
Program
Topics & Tracks
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
Keynotes
Awards
Tutorials
Business & Investment
2004 Sub Sections
Sponsors
Exhibitors
Venue 2004
Proceedings
Organization
Press Room
Purchase CD/Proceedings
NSTI Events
Subscribe
Site Map
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Nanotech Supporting Organizations
Media Sponsors
Nanotech Media Sponsors
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Microplate Modeling under Coupled Structural-Fluidic-Electrostatic Forces

M.I. Younis and A.H. Nayfeh
Virginia Tech, US

Keywords: Microplates, squeeze-film damping, electrostatic forces, quality factors

Abstract:
We present a model for the dynamic behavior of microplates under the coupled effects of squeeze-film damping, electrostatic actuation, and mechanical forces. The model simulates the dynamics of microplates and predicts their quality factors under a wide range of gas pressures and applied electrostatic forces up to the pull-in instability. The model utilizes the nonlinear Euler-Bernoulli beam equation, the linearized dynamic von-Karman plate equations, and the linearized compressible Reynolds equation. The static deflection of the microplate is calculated using the beam model. Perturbation techniques are used to derive analytical expressions for the pressure distribution in terms of the plate mode shapes around the deflected position. The static deflection and the analytical expressions are substituted into the plate equations, which are solved using a finite-element method.

Nanotech 2004 Conference Technical Program Abstract

 
Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact