Geometry- and Bias-Dependence of Normalized Transconductances in Deep Submicron CMOS

Matthias Bucher
Technical University of Crete (TUC), Chania, Crete, GREECE

Dimitris Kazazis
Brown University, Providence, Rhode Island, USA

François Krummenacher
EPFL, Lausanne, SWITZERLAND
Outline

- Introduction
- EKV MOSFET Model Basics
- Normalized Transconductances Method
 - Analysis vs. level of inversion and channel length
- Examples using EKV3.0 MOSFET model with 0.25um, 0.13um CMOS
- Conclusions
Introduction

- Rapid evolution & increasing complexity of CMOS technology
- Moderate/weak inversion increasingly important.
 - Analog/mixed signal, wireless RF, LV-LP battery operated equipment requires novel circuit solutions.
- Need for efficient analog design methods
 - Rapid evaluation of design trade-offs: gain, bandwidth, linearity, matching, noise, chip area.
 - Hand-calculation and full circuit simulation.
- Transconductance method based on EKV MOS transistor model:
 - Normalization of current, voltage, transconductances,...
 - Analysis of MOSFET vs. level of inversion & channel length.
 - EKV 3.0 MOSFET model for deep submicron CMOS.
MOSFET Basics -- Linearization of Qi

Consider charge and voltage balance:

\[-\frac{Q_i'}{C_{ox}} = \gamma \sqrt{U_T} \cdot \left[\frac{\Psi_S}{U_T} + \exp\left[\frac{\Psi_S - 2\Phi_F - V_{ch}}{U_T}\right] \right] - \sqrt{\frac{\Psi_S}{U_T}} \]

\[V_G = V_{FB} + \Psi_S + \gamma \sqrt{\Psi_S} - \frac{Q_i'}{C_{ox}} \]

- \(Q_i' \) is almost linear w.r.t. surface potential \(\Psi_S \) at fixed \(V_G \).
- Linearization is essential to analytic charge-sheet model.

Inversion Charge Linearization:

\[\frac{dQ_i'}{C_{ox}} \approx n \cdot d\Psi_S \]

Pinch-off Surface Potential:

\[\Psi_{SP} \equiv \Psi_S \mid Q_i = 0 \]

Pinch-off Voltage:

\[V_P \equiv \Psi_{SP} - \phi \]
Pinch-off Voltage, Slope Factor

\[n \approx \frac{\partial V_G}{\partial V_P} = 1 + \frac{\gamma}{2\sqrt{\phi + V_P}} \]

Slope Factor:

Pinch-off Voltage:

\[V_P \approx \frac{V_G - V_{TO}}{n} \]

\[V_{TO} = V_{FB} + \phi + \gamma \sqrt{\phi} \]

\[\gamma = \frac{\sqrt{2q\varepsilon_{si}N_{sub}}}{C'_{ox}} \quad C'_{ox} = \frac{\varepsilon_{ox}}{T_{ox}} \]

\[\phi \approx 2\phi_F + m \cdot U_T = U_T \cdot \left[2\ln\left(\frac{N_{sub}}{n_i}\right) + m \right] \]

- \(V_P, n \) account for the substrate effect
- \(T_{ox}, N_{sub}, V_{FB} \), same parameters as in surface potential model
Charge Sheet Model

- Consider drift and diffusion current transport, use linearization:

\[
I_D \cdot dx = \mu W[-Q'_i \cdot d\Psi_S + U_T \cdot dQ'_i] = \mu W\left[-\frac{Q'_i}{nC'_{ox}} + U_T\right] \cdot dQ'_i
\]

- Integrate from source to drain:

\[
I_D = 2nU_T^2 \cdot \mu C'_{ox} \frac{W}{L} \cdot (i_f - i_r)
\]

- with current-charge relationships:

\[
i_{f(r)} = q_{f(r)}^2 + q_{f(r)} \quad \text{or,} \quad q_{f(r)} = \sqrt{1/4 + i_{f(r)}}
\]

- Consider channel conductance:

\[
\frac{dI_D}{dV_{ch}} = \mu \cdot \frac{W}{L} \cdot (-Q'_i)
\]

- ... in normalized form:

\[
\frac{di_{f(r)}}{d\nu_{S(D)}} = q_{f(r)} = \sqrt{1/4 + i_{f(r)}} = i_{f(r)} \cdot G(i_{f(r)})
\]

- Integration yields Voltage-Charge relationship:

\[
\nu_P - \nu_{S(D)} = 2q_{f(r)} + \ln(q_{f(r)})
\]
Normalization of Drain Current and Voltages

Inversion Coefficient (IC) is meaningful for operation in **saturation** ... covering all the range from weak to strong inversion

Normalization of voltages by \(U_T = kT/q \): \(\nu_{G(S,D)} = V_{G(S,D)}/U_T \).

Inversion Coefficient:
\[
IC = \frac{I_D}{I_{Spec}}
\]

Specific Current:
\[
I_{Spec} = I_0 \cdot \frac{W}{L} = 2nU_T^2 \mu C'_{ox} \cdot \frac{W}{L}
\]
Transconductance-to-Current Ratio

- $G(\text{IC})$: normalized transconductance-to-current ratio:
 - compared to exact surface potential model
- $G(\text{IC})$ vs. IC is a *universal* characteristic of the MOSFET
 - ... independent of bias (saturation), Temp., technology (long-channel).
MOS Transistor Transconductances

- Source-, gate-, drain- and substrate transconductances:

\[
g_{ms} = - \left. \frac{\partial}{\partial V_S} (I_D) \right|_{V_G,V_D} \\
g_{mg} = \left. \frac{\partial I_D}{\partial V_G} \right|_{V_S,V_D} \\
g_{md} = \left. \frac{\partial I_D}{\partial V_D} \right|_{V_G,V_S}
\]

\[
g_{mb} = g_{ms} - g_{mg} - g_{md}
\]
Transconductances Analysis

- Fundamental relationships:
 \(g_{mg} = \frac{g_{ms} - g_{md}}{n} \quad g_{mb} = \frac{n - 1}{n} g_{mg} \)

- Transconductance-to-current ratios:
 \(G_x \equiv \frac{g_{mx} \cdot U_T}{I_D} \)

- 1st-order expressions of transconductance-to-current ratios:
 \(G_G \equiv \frac{G(IC)}{n} \quad G_S \equiv G(IC) \quad G_G \equiv \frac{n - 1}{n} G(IC) \)
 \(G_D \equiv G(IC) \cdot \frac{\partial V_P}{\partial V_D} + \frac{U_T}{n} \cdot \frac{\partial n}{\partial V_D} \)

- 1st-order expressions are valid mostly in moderate & weak inversion.
- \(G_D \) is also directly dependent on \(G(IC) \) and short-channel effects in \(V_P, n \)
Gate Transconductance

- $g_m * U_T / I_D$ vs. I_D / I_{spec}
 - BSIM3v3 cannot fit a large range in moderate/weak inversion (parameter extraction dependent; but the problem is structural).
- measured at $V_S = 0$, $V_D = V_G$ (saturation).
Gate Transconductance

- EKV 3.0 fit from weak to strong inversion, for long & short-channel devices (NMOS)
 - Asymptote in weak inversion: $1/n$
- Weak inversion slope ($S \approx \ln 10 \cdot n \cdot U_T$) is dependent on IC.
Source Transconductance

- $g_{ms} U_T/I_D$ vs. IC is universal
 - indep. of: VG, Temp., W, L (except very short transistors)
 - Asymptote in weak inversion: ~ 1

- $g_{mg} \sim g_{ms}/n$ (saturation)
Substrate Transconductance

- $g_{mb}^*U_T/I_D$ vs. IC is dependent on substrate effect
 - Asymptote in weak inversion: $(n-1)/n$
- $g_{mb} \sim g_{ms}^*(n-1)/n$
Drain Transconductance

- $g_{md} \frac{U_T}{I_D} = \frac{U_T}{V_A}$ where $V_A = \frac{I_D}{g_{md}}$ is “Early voltage”.
- $g_{md} \frac{U_T}{I_D}$ shows very strong dependence on L!
- 1st-order G_D tends to underestimate the measured $g_{md} \frac{U_T}{I_D}$
Drain Transconductance

- $g_{md} * U_T / I_D$ reveals different scaling for NMOS and PMOS
 - W.I: dominated by DIBL, Charge-sharing
 - S.I: dominated by Vel. Sat., CLM, self-heating
- EKV 3.0 shows excellent $g_{md} * U_T / I_D$ modeling with IC, L
Intrinsic gain g_{mg} / g_{md} is highest in moderate (!!!) inversion, long-channel devices.

EKV 3.0 shows excellent scaling abilities.
Short Channel VT, n

- Combination of all effects:
 - Charge Sharing (CS) reduces substrate effect
 - DIBL reduces threshold voltage @ short L, high V_D (*but not only!!!*)
Normalized gms(g)/ID, long-channel

- Source- and gate transconductance-to-current ratio (L=5um)
 - \(g_{ms} \cdot U_T / I_D \) is universal
 - \(g_{mg} \cdot U_T / I_D \) is affected by substrate effect: \(g_{mg} = g_{ms} / n_v \)
Normalized gmg(s)/ID, short channel

- Transconductance-to-current ratio vs. (log) current (L=0.13um)
 - DIBL lowers $g_{ms}U_T/I_D$ asymptote in weak inversion
 - Charge-sharing reduces substrate effect n_v for short-channel
- Excellent overall capabilities for EKV3.0 to model g/I_D vs. I_D.

0.13um CMOS
Normalized gmd vs. IC

Normalized gmd is generally dependent on IC

- worse for short-channel, weak inversion
- Scaling anomaly?

0.13um CMOS
Scaling anomalies of normalized gmd with pocket/halo CMOS

- Usual “design” assumption: normalized gmd $\sim L^{-1}$ -- almost never met!
Summary -- gmd scaling in pocket-CMOS

- Short-channel normalized gmd shows:
 - \(\sim L^{-2} \) dependence in strong inversion
 - \(\sim L^{-3} \) dependence in weak inversion
- Intermediate channel length: deterioration of normalized gmd
 - Shows a scaling anomaly in normalized gmd
- Long-channel gmd shows \(\sim L^{-0.5} \) dependence
- Conclusion: pocket implants improve short-channel gmd, but degrade long-channel gmd
 - Cause: (drain-side) barrier-lowering in longer-channel devices
 Chatterjee e.a. VLSI Symp. 1999, Buss e.a. IEDM 1999
Conclusions

- EKV MOS transistor model provides ideal framework for analysis of fundamental MOS characteristics
 - Consistent normalization of model quantities
- Analysis of Source, Gate, Substrate & Drain Transconductances with EKV
 - Simultaneous modeling vs. level of inversion (IC) and channel lengths
 - Provides useful information for advanced analog IC design -- parameter extraction -- MOSFET model benchmarking.
- Short-channel scaling of normalized gmd:
 - Strong inversion \(\sim L^{-1..-2} \)
 - Weak/moderate inversion: \(\text{gmd} \sim L^{-3} \)
- Scaling anomaly in normalized gmd due to pocket/halo implant @ intermediate channel lengths -- shown for the first time.
 - Long-channel pocket implant effect under development.
Contact

Acknowledgement:

David Binkley, Peter Bendix, Daniel Foty,
Sadayuki Yoshitomi

Contact:

Matthias Bucher
Assistant Professor
Technical University of Crete (TUC)
Polytechnioupolis, 73 100 Chania, Crete, Greece
bucher@electronics.tuc.gr

EKV2.6 website:

http://legwww.epfl.ch/ekv/

EKV3.0 Model Tutorial:

Thursday March 11, 1:30 PM