Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Program
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
2003 Sub Sections
Proceedings
Organization
Press Room
Sponsors
Exhibitors
Venue
Organizations
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Ab-initio Molecular Dynamics of CH3OH at the H2O/Pt interface

T.R. Mattsson and S. J. Paddison
Sandia National Laboratories, US

Keywords: PEM Fuel Cell

Abstract:
ORAL Among the engineering achievements, including a reduction in the overall cost of the system, necessary for Direct Methanol Fuel Cells (DMFC) to become a competitive alternative for both portable and stationary power applications, are improved catalysts. An important step towards improving existing solutions, in turn, is a fundamental, molecular based, understanding of the catalytic processes. Computer simulations, in particular calculations from first principles, have proven to provide key insights into gas-phase catalytic reactions. Density Functional Theory (DFT) stands out as the method of choice for this type of problems. With DFT, it is possible to describe molecular reactions as well as an extended metallic surface without assumptions about atomic interactions. DFT has therefore been used extensively, and successfully, for explaining properties of gas-phase reactions at surfaces. The situation in a DMFC is, on the other hand, significantly more complex since the water solution and the water/ Platinum interface will substantially influence the reaction kinetics. In this talk, we present first-principles molecular dynamics simulations of methanol near the Pt/water interface. Energies, bond lengths, bond angles and correlation functions during trajectories extending several nanoseconds will be reported. The dependences on distance from the interface as well as on the orientation of the methanol molecule relative to the surface will be investigated and compared to the corresponding quantities for the gas-phase reaction. T.R.M. acknowledges support from the Motorola/SNL computational materials CRADA. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04- 94AL85000.

NSTI Nanotech 2003 Conference Technical Program Abstract

 
Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact