Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Program
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
2003 Sub Sections
Proceedings
Organization
Press Room
Sponsors
Exhibitors
Venue
Organizations
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Numerical Simulation of Field Amplified Sample Stacking in Microfluidic System

J. J. Feng, S. Krishnamoorthy, S. Sundaram
CFD Research Corporation, US

Keywords: sample stacking, modeling, dispersion

Abstract:
In this paper we developed a numerical simulation method that solves the transport phenomenon associated with sample stacking in microchip-based separation system. The model is based on thin double layer approximation where the electrostatic force is only pronounced in a very thin layer adjacent to the charged surface. The electrokinetic equations describing the electrophoresis as well as electroosmosis are solved numerically in conjunction with fluid flow, heat transfer and electrostatics. The entire theory is applicable to both fully ionized electrolyte solutions as well as acid, base and ampholyte solutions in which rapid association and dissociation of species may occur. We studied a typical sample stacking with one interface in the presence of electroosmosis. The evolution of sample peak grows almost linearly, which is in consistence with experiment observation Sample dispersion due to mismatch of EOF flow in sample and buffer region is also examined, where two interfaces are involved. This configuration represents a typical FASS protocol in which anions accumulate at the interface near anode and cations accumulate in the other direction. The mismatch of EOF flow creates internal pressure which disperses the sample plug, thus reduces the resolution of sample profile. The current simulation results agree qualitatively with experimental results.

NSTI Nanotech 2003 Conference Technical Program Abstract

 
Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact