Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Program
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
2003 Sub Sections
Proceedings
Organization
Press Room
Sponsors
Exhibitors
Venue
Organizations
NSTI Events
Subscribe
Site Map
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

A Nanoscopic Rotary Electrostatic Motor

Wright, J.H. and Sheehan, D.P.
University of San Diego - Math / Computer Science, US

Keywords: mems nanotechnology motor power propulsion

Abstract:
A Nanoscopic Rotary Electrostatic Motor [J.H. Wright (Dept. Mathematics and Computer Science), and D.P. Sheehan (Dept. Physics), University of San Diego, San Diego, CA 92110] A novel, rotary, sub-micron, solid-state motor is introduced that uses the electric field energy of an open-gap p-n junction (Sheehan, Putnam and Wright, Found. Phys. 32 p. 1557, 2002). The open-gap voltage may be provided either via external bias or via the thermally generated electric field inherent in the depletion region of a standard p-n junction. Through variation of design parameters or applied external bias, the mechanical output power can be adjusted through several orders of magnitude, in excess of 10^(-8) W for device size scales ranging from 10^(-7) to 10^(-4) m per side, with corresponding high power densities in excess of 1 GW/m^3. Basic motor operation is derived using an analytic 1-D model and a numerical 2-D model. Potential applications include mechanical drives for micro- and nano-scale machines and manipulators; microfluid and thermal pumps; propulsion and inertial guidance of machines; thermal sensors; and high-frequency oscillators. Analysis indicates frequency can be controlled by voltage, with upper-limit frequencies in excess of 50MHz. Laboratory tests and construction of this device appear feasible in the near term.

NSTI Nanotech 2003 Conference Technical Program Abstract

 
Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact