Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Index of Authors
2003 Sub Sections
Press Room
NSTI Events
Site Map
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461

Comparison of the Equilibrium Structure of Electrolyte calculated using Equilibrium Monte Carlo, Molecular Dynamics, and Boltzmann Transport Monte Carlo Simulations

T.A. van der Straaten, D.P. Chen, Z. Kuang, U. Ravaioli, D. Boda, R.S. Eisenberg and D. Henderson
University of Illinois, US

Keywords: pair correlation function, electrolyte, comparitive simulation

We use the pair correlation function as a benchmark calculation to compare three simulation methodologies - Equilibrium Monte Carlo, Molecular Dynamics, and Boltzmann Transport Monte Carlo. The three simulation approaches handle electrostatic boundary conditions and ion-water interactions, and evaluate electrostatic forces quite differently. The system simulated is a simple homogeneous electrolyte at equilibrium at concentrations of biological interest. Ions interact with each other via the electrostatic field and by either the standard Lennard-Jones interaction potential (LJ), or by a truncated form of LJ that mimics the ionic core repulsive part of the interaction potential. Ion-water interactions are represented by the primitive model, in which the water is modeled as a uniform dielectric medium. The pair correlation function has been calculated for monovalent and divalent electrolytes using both interaction potentials (standard LJ and truncated LJ). Initial results show good comparison between the three different simulations. We also show that the Boltzmann Transport Monte Carlo used in conjunction with the Particle-Particle-Particle Mesh (P3M) technique [2] allows the electrostatic forces to be resolved on a much coarser mesh while still recovering the correct pair correlation function, resulting in a considerable reduction in computational load.

NSTI Nanotech 2003 Conference Technical Program Abstract

Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact