Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Program
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
2003 Sub Sections
Proceedings
Organization
Press Room
Sponsors
Exhibitors
Venue
Organizations
NSTI Events
Subscribe
Site Map
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Protein-Based Bioelectronic Heterostructures

S. Crittenden, S. Howell, R. Reifenberger, J. Hillebrecht and R. R. Birge
Purdue University, US

Keywords: bacteriorhodopsin, biomembrane, SPM, photovoltage

Abstract:
Bioelectronics offers a potential alternative to Si-based technology because natural evolution and selection have optimized many biological molecules to perform tasks that can only be mimicked by complicated electronic circuits. Purple membrane (PM) patches containing bacteriorhodopsin (bR) proteins could be harvested from the bacterium and used as the key light-absorbing unit in nanometer-size photodetectors that rely on many of the light sensitive properties inherent in the protein [1-7]. We used non-contact scanning probe microscopy to characterize bR films on multiple substrates. Wild type and a variety of mutants were studied. Conductive AFM was used to probe the I(V) characteristics of individual PM patches. Electrostatic force microscopy techniques were developed to study the photovoltage of PM multilayers on indium tin oxide substrates. We find a humidity dependant photovoltage response under illumination by a 635 nm photodiode with peak photovoltages in excess of 2V at ~140 W/m2 for ~15% relative humidity. I(V) data from individual PM patches show evidence for threshold conduction dependant on the relative humidity. Morphological studies show reduced structural stability of membrane patches for all mutants investigated. Taken together, these results reveal many new characteristics of bR that may be of significance for the design of future nanoscale devices.

NSTI Nanotech 2003 Conference Technical Program Abstract

 
Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact