Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Program
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
2003 Sub Sections
Proceedings
Organization
Press Room
Sponsors
Exhibitors
Venue
Organizations
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Carbon Nanofiber-Based Electrode Interface to Microbial Biofilms

T. E. McKnight, A.V. Melechko, M.A. Guillorn, V.I. Merkulov, J.T. Fleming, D. Hensley, E. Hullander, J. McPherson, D. Nivens, G.S. Sayler, D.H. Lowndes, M. L. Simpson
Oak Ridge National Laboratory - Molecular Scale Engineering Nanoscale Technologies, US

Keywords: nanofiber, electrochemistry, biofilm, gene regulation, biosensor

Abstract:
We report on the integration of bacterial biofilms with carbon nanofiber-based electrochemical systems to provide a robust biosensor platform. Biofilms are robust, self-packaged communities of whole cells that have attracted much attention due to their ubiquity, their resilence, and their impact upon industrial, environmental, and medical processes. In this effort, an interdigitated electrode system was implemented to interface to the engineered cells of a biofilm matrix. The interdigitated electrode array featured 40, individually-addressable, electrodes with each 2 mm wide element populated with forests of vertically-aligned carbon nanofibers. Carbon nanofibers are self-assembling structures with nanometer-scale tips and micron lengths that may be grown normal to the surface of a substrate in a highly deterministic manner, with control over fiber location, length, diameter, geometry, and even chemical composition. The ability to grow fibers at desired locations and the vertical orientation of fibers above the growth substrate provides unique new approaches to electrochemical sensing systems. The vertical aspect of nanofibers provides basis for interrogation around and within biofilm matrices. We will provide overview of our progress with electrochemical characterization of fibered electrodes, local modulation of oxygen-dependent bioluminescence in lux+ biofilms, and electrical induction of genetic elements within cells of the biofilm matrix.

NSTI Nanotech 2003 Conference Technical Program Abstract

 
Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact