Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Program
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
2003 Sub Sections
Proceedings
Organization
Press Room
Sponsors
Exhibitors
Venue
Organizations
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Interfacial Motion-Based Energy Dissipation in Nano-Mechanical Oscillators

D.N. Pawaskar and R. Phillips
California Institute of Technology, US

Keywords: Energy dissipation, Vibration, Beam, Quality factor, Dislocations, Grain boundaries

Abstract:
Mechanical damping strongly influences the sensitivity and resolution of nano-sensors and actuators. In this paper, we have investigated one of the key intrinsic mechanisms responsible for dissipation of vibrational energy in beams composed of a polycrystalline material, namely motion of grain boundaries. The focus has been on modeling the movement of the grain boundary perpendicular to the interfacial plane. To this end, we have modeled the interface as an array of dislocations. By accounting for all forces acting on individual dislocations, we are able to extract the effective motion of the interface and thus compute cyclical energy losses. We have predicted the dependence of the mechanical quality factor (Q) on the grain boundary misorientation and inclination angles, and proposed an experiment based on our results.

NSTI Nanotech 2003 Conference Technical Program Abstract

 
Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact