Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Program
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
2003 Sub Sections
Proceedings
Organization
Press Room
Sponsors
Exhibitors
Venue
Organizations
NSTI Events
Subscribe
Site Map
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Water-Carbon Interactions: Potential Energy Calibration Using Experimental Data

T. Werder, J.H. Walther, R.L. Jaffe and P. Koumoutsakos
NASA Ames Research Center, US

Keywords: graphite, water, contact angle, potential, molecular dynamics

Abstract:
Functionalized carbon nanotubes (CNT) are being studied for use as nanoscale biosensors and water or proton channels. Several molecular dynamics (MD) studies of water in carbon nanotubes have recently been performed to gain further insight into the latter, but in these MD studies a wide range intermolecular potentials for water-carbon interactions was employed. In general, experimental data are not available for calibrating the strength of the water-carbon interaction, so it is difficult to assess the accuracy of these potentials. In the present study we use MD simulations to compute the static contact angle (q) for nanometer-size water droplets on graphite and compare the results with available experimental data. For the case of a 2000-molecule water droplet on graphite, we demonstrate that q is sensitive to changes in the carbon-water interaction strength. This allows us to use the experimental value for the contact angle of water on graphite (q =86°) to calibrate the water-carbon potential. Using a series of water-carbon potentials that range from hydrophobic to complete wetting behavior in our MD simulations, we determine the relationship between the binding energy (D E ) of a water monomer on graphite and q for the droplet. The data show complete wetting for D E < -13.1 kJ/mol and a linear relationship between D E and q for other values. From these data we have obtained a new potential to compute the binding energy of water on graphite (D E = -7.3 kJ/mol) and to characterize the water-graphite/carbon nanotube interface.

NSTI Nanotech 2003 Conference Technical Program Abstract

 
Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact