Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Program
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
2003 Sub Sections
Proceedings
Organization
Press Room
Sponsors
Exhibitors
Venue
Organizations
NSTI Events
Subscribe
Site Map
 
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Molecular Recognition on Demand

Cris Van Hout and James R. Prudent
EraGen Bioscience, Inc., US

Keywords: Genetic, recognition, nanostructures

Abstract:
DNA is the only chemistry that allows for ?molecular recognition on demand?. That is, unlike any other molecular recognition chemistry, DNA allows for the simple design and rapid synthesis of molecule sets that will recognize each other and self assemble into nanostructures. Expanding DNA chemistry to include additional base pairs, would allow for a more precise manipulation of nanostructures constructed with DNA. AEGIS (An expanded genetic information system) is that additional chemistry. Made up of four additional base pairs, AEGIS can be used to self assemble more precise nanostructures as was the case for the commercially available branched DNA detection assay system (Figure 1). Here the hydrogen bonding patterns that make AEGIS base pairs unique from natural DNA, allowed for a simply means of transcending problems otherwise unsolvable. Today, EraGen Biosciences is implementing AEGIS into nanostructures for the molecular diagnostic markets. By developing software that incorporates the thermodynamic parameters of AEGIS base pairs, we are enabling the rational design of a molecular recognition system that implements AEGIS. Here we will show how AEGIS can eliminate problems evidenced by universal DNA tag technologies constructed solely from natural DNA. An AEGIS based tagging system has now been manufactured for use with solid surface technologies, demonstrating average signal to noise approaching 200:1 without the need to wash or wait(Figure 2). A few of the advantages of nanostructures constructed from AEGIS components include: faster assembly, more precise assembly, shorter sequences, and assembly in the presence of naturally occurring DNA. In addition, AEGIS has also been applied to high-throughput genotyping, genetic quantitation, and cloning. This talk will demonstrate why AEGIS is a true paradigm shift in molecular diagnostics and hopefully convey to the audience why AEGIS may be important to the future of nanotechnology.

NSTI Nanotech 2003 Conference Technical Program Abstract

 
Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact