Nano Science and Technology InstituteNano Science and Technology Institute
Nano Science and Technology Institute 2003 NSTI Nanotechnology Conference & Trade Show
Nanotech 2003
BioNano 2003
Program
Sunday
Monday
Tuesday
Wednesday
Thursday
Index of Authors
2003 Sub Sections
Proceedings
Organization
Press Room
Sponsors
Exhibitors
Venue
Organizations
NSTI Events
Subscribe
Site Map
Nanotech Proceedings
Nanotechnology Proceedings
Supporting Organizations
Supporting Organizations
Event Contact
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 353-5004
Fx: (925) 886-8461
E-mail:
 
 

Proper Orthogonal Modes and Component Mode Synthesis in Macromodel Generation for Complex MEMS Device Simulation

W.Z. Lin, K.H. Lee and S.P. Lim
Institute of High Performance Computing, SG

Keywords: macromodels, reduced-order models, proper orthogonal decomposition, component mode synthesis

Abstract:
In this paper, a novel method for macromodel generation for the dynamic analysis of structurally complex MEMS devices is developed by making use of proper orthogonal decomposition (POD) and classical component mode synthesis (CMS). The complex MEMS device is divided into interconnected components and each of these components is treated separately using POD to extract its proper orthogonal modes (POMs). Component responses are expressed in generalised coordinates that are defined by the POMs. The requirements of the displacement and force compatibility at the interface serve as constraint equations between the component coordinates to determine the system dynamic response. Numerical results obtained from the simulation of a nonuniform beam-beam-beam complex MEMS device shows that the macromodel generated this way can dramatically reduce the computation time while capturing the device behaviour faithfully.

NSTI Nanotech 2003 Conference Technical Program Abstract

 
Featured Sponsors
Nanotech Sponsors
News Headlines
NSTI Online Community
 
 

© Nano Science and Technology Institute, all rights reserved.
Terms of use | Privacy policy | Contact