Gate Current Partitioning in MOSFET Models for Circuit Simulation

Q. Ngo¹, D. Navarro², T. Mizoguchi², S. Hosakawa², H. Ueno², M. Miura-Mattausch², and C. Y. Yang¹

Motivation

• Aggressive MOSFET scaling giving rise to non-negligible direct tunneling current
• Modeling of short-channel effects are imperative for IC design accuracy

Objectives

• Develop a surface-potential based compact gate-current model
• Accurately describe partitioning of gate-current between source and drain

Q. Ngo, MSM-WCM 2003
Modeling Approach

- Description of different gate-tunneling mechanisms
 - Gate-to-Channel Tunneling
 - Gate-to-SDE Tunneling

- Use of three core MOSFET concepts
 - Band-to-Band generation of carriers
 - Surface potential
 - Inversion charge

- Generate mathematical description of core concepts

Q. Ngo, MSM-WCM 2003
Summary of Core Model Equations

Source-Drain Partitioning

\[I_{G,D} = W \int_{0}^{L} \frac{y}{L} J_G \, dy \]
\[I_{G,S} = W \int_{0}^{L} (1 - \frac{y}{L}) J_G \, dy \]
\[I_G = I_{G,S} + I_{G,D} \]

Gate Current Density and Average Inversion Layer Thickness

\[J_G = q x_C A \frac{E_{ox}^2}{E_g^2} \exp(-B \frac{E_g^3}{E_{ox}}) \]
\[x_C \equiv \sqrt[3]{\frac{Q_i'}{q N_{sub} L_D \sqrt{2}}} \]

Q. Ngo, MSM-WCM 2003
Results

Gate Current versus Gate Voltage

- $V_d = 0$, $T_{ox} = 2.48\text{nm}$
- $L = 5\mu\text{m}$

Gate Current versus Drain Voltage

- $W/L = 10\mu\text{m}/5\mu\text{m}$, $T_{ox} = 2.48\text{nm}$, $V_g = 1.2\text{V}$

Q. Ngo, MSM-WCM 2003
Conclusion

- A new gate-current partitioning model suitable for circuit simulation has been developed
- Gate-current model has been validated with measurements
- Partitioning method has been validated by using 2-D device simulation